RATIONAL HARNACK CURVES ON TORIC SURFACES

Jorge Alberto Olarte Parra

Universidad de los Andes, Colombia ja.olarte1299@uniandes.edu.co

Harnack curves are a family of real algebraic curves who are distinguished because their topology is well understood, meaning that Hilbert's 16th problem is solved for these curves. Let f be a 2 variable real polynomial whose Newton polygon is Δ and let C be the curve defined as the zeros of f inside the toric variety X_{Δ} . The original definition of Harnack curves by Mikhalkin states that the real part of C, $\mathbb{R}C \subseteq \mathbb{R}X_{\Delta}$, is a Harnack curve if and only if the following conditions are satisfied:

- 1. The number of connected components of $\mathbb{R}C$ is maximal, that is g+1, where g is the arithmethic genus of C.
- 2. Only one component O intersects the axes of $\mathbb{R}X_{\Delta}$.
- 3. Let l_1, \ldots, l_n be the axes of X_{Δ} ordered in a way such that it agrees with the cyclical order of their corresponding sides of Δ and let d_1, \ldots, d_n be the integer lengths of the corresponding sides. Then O can be divided into disjoint arcs $\alpha_1, \ldots, \alpha_n$ such that $\alpha_i \cap l_i = d_i$ and $\alpha_i \cap l_j = 0$ when $j \neq i$.

These curves have several different characterizations, for example, its amoeba (the image of C under the map $(z, w) \mapsto (\log |z|, \log |w|)$) is of maximal area. These curves have applications to physics through dimer theory. In this poster we focus on rational Harnack curves, which are Harnack curves of genus 0 and we show how these curves can be explicitly parametrized using the homogeneous coordinates of X_{Δ} .

Joint work with Mauricio Velasco (Universidad de los Andes, Colombia).