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An integer n× n-matrix A = (αpq) is called exponent if all its diagonal entries are equal to zero and for
all possible i, j and k the inequality αij + αjk > αik holds. The study of exponent matrices is important
because of their crucial role in the theory of tiled orders.

We show that the set T of minimal non-negative exponent n × n-matrices can be described as follows.
The matrix T = (tij) ∈ En belongs to T if and only if tij ∈ {0, 1} for all i, j and there exists a proper
subset I of {1, . . . , n} such that tij = 1 is equivalent to i ∈ I and j 6∈ I.
Let ⊕ be the element-wise maximum of matrices and let ⊗ be a sum of matrices. Clearly, A⊗ (B⊕C) =
(A ⊗ B) ⊕ (A ⊗ C) for all A, B, C ∈ En, whence En can be considered as an algebra (En, ⊕,⊗), with
respect to operations ⊕ and ⊗.
We prove the following result.

Theorem. For any non-zero A ∈ En there exist a decomposition

A = B1 ⊗ . . .⊗Bl ⊕ . . .⊕ C1 ⊗ . . .⊗ Cm,

where all matrices B1, . . . , Cm belong to T and as usual ⊗ performed prior to ⊕.
Thus, T can be considered as a basis of (En, ⊕,⊗). This basis is unique. Nevertheless, there is no
uniqueness of the decomposition of A ∈ (En, ⊕,⊗) into the max-plus expression of matrices from T .
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