A proof of the peak polynomial positivity conjecture

Pamela E. Harris

Williams College, United States

pamela.e.harris@williams.edu

Given a permutation $\pi = \pi_1 \pi_2 \cdots \pi_n \in \mathfrak{S}_n$, we say an index *i* is a peak if $\pi_{i-1} < \pi_i > \pi_{i+1}$. Let $P(\pi)$ denote the set of peaks of π . Given any set *S* of positive integers, define $P_S(n) = \{\pi \in \mathfrak{S}_n : P(\pi) = S\}$. In 2013 Billey, Burdzy, and Sagan showed that for all fixed subsets of positive integers *S* and sufficiently large $n, |P_S(n)| = p_S(n)2^{n-|S|-1}$ for some polynomial $p_S(x)$ depending on *S*. They gave a recursive formula for $p_S(n)$ involving an alternating sum, and they conjectured that the coefficients of $p_S(x)$ expanded in a binomial coefficient basis centered at $\max(S)$ are all nonnegative. In this talk we will share a different recursive formula for $p_S(n)$ without alternating sums, and we use this recursion to prove that their conjecture is true.

Joint work with Alexander Diaz-Lopez, Swarthmore College, Erik Insko, Florida Gulf Coast University and Mohamed Omar, Harvey Mudd College.