A problem of Beelen, Garcia and Stichtenoth on an Artin-Schreier tower

Horacio Navarro

IMAL, Argentina

hnavarro@santafe-conicet.gov.ar

A tower of function fields over \mathbb{F}_q is a sequence of algebraic function fields $\mathcal{F} = \{F_i\}_{i=0}^{\infty}$ such that for all $i \geq 0$ $F_i \subsetneq F_{i+1}$, F_{i+1}/F_i is a separable finite extension, \mathbb{F}_q is algebraically closed in F_i and there exists F_j with genus greater than one.

A tower \mathcal{F} is called *asymptotically good* if $\gamma(\mathcal{F}) < \infty$ and $\nu(\mathcal{F}) > 0$ where

 $\gamma(\mathcal{F}) := \lim_{i \to \infty} g(F_i) / [F_i : F_0]$ and $\nu(\mathcal{F}) := \lim_{i \to \infty} N(F_i) / [F_i : F_0],$

 $g(F_i)$ is the genus of F_i and $N(F_i)$ is the number of rational places of F_i . Otherwise, \mathcal{F} is called *asymptotically bad*.

In 2006 Beleen, Garcia and Stichtenoth proved that any recursive tower of function fields over \mathbb{F}_2 defined by g(Y) = f(X) with $g(T), f(T) \in \mathbb{F}_2(T)$ and deg $f = \deg g = 2$ is defined by the Artin-Schreier equation

$$Y^{2} + Y = \frac{1}{(1/X)^{2} + (1/X) + b} + c,$$
(1)

with $b, c \in \mathbb{F}_2$. They checked that all the possible cases were already considered in previous works, except when b = c = 1. In fact, they left as an open problem to determine whether or not this tower is asymptotically good over \mathbb{F}_{2^s} for some positive integer s.

In this talk we will show that the recursive tower defined by equation (1) with b = c = 1 is asymptotically bad over \mathbb{F}_{2^s} when s is odd and where the main difficulty arises in the study of this tower when s is even.

Joint work with Ricardo Toledano (Universidad Nacional del Litoral-IMAL) and María Chara (Universidad Nacional del Litoral-IMAL).