ISOMORPHISM CONJECTURES WITH PROPER COEFFICIENTS

Eugenia Ellis

Universidad de la República, Uruguay eellis@fing.edu.uy

Let G be a group and \mathcal{F} a nonempty family of subgroups of G, closed under conjugation and under subgroups. Also let E be a functor from small \mathbb{Z} -linear categories to spectra, and let A be a ring with a G-action. Under mild conditions on E and A one can define an equivariant homology theory $H^G(-, E(A))$ of G-simplicial sets such that $H^G_*(G/H, E(A)) = E(A \rtimes H)$. The strong isomorphism conjecture for the quadruple (G, \mathcal{F}, E, A) asserts that if $X \to Y$ is an equivariant map such that $X^H \to Y^H$ is an equivalence for all $H \in \mathcal{F}$, then $H^G(X, E(A)) \to H^G(Y, E(A))$ is an equivalence. We introduce an algebraic notion of (G, \mathcal{F}) -properness for G-rings, modelled on the analogous notion for G- C^* -algebras, and show that the strong (G, \mathcal{F}, E, P) isomorphism conjecture for (G, \mathcal{F}) -proper P is true in several cases of interest in the algebraic K-theory context.

Joint work with Guillermo Cortiñas (Universidad de Buenos Aires, Argentina).