FoCM

Conference abstracts


Session S06 - Algebraic Combinatorics

July 25, 16:30 ~ 16:55

Cotas para la energía de Nikiforov sobre digrafos

Natalia Agudelo-Muñetón

Universidad de Antioquia - Medellín, Colombia   -   nagudel83@gmail.com

La energía de un grafo $G$ se define como $E(G)=\sum\limits_{i=1}^{n}\left \vert \lambda _{i}\right\vert $, donde $\lambda _{1},\lambda _{2},\ldots ,\lambda _{n}$ son los valores propios de la matriz de adyacencia de $G$. Este concepto fue extendido de varias maneras para digrafos: $\mathcal{E}\left( D\right) =\sum\limits_{i=1}^{n}\left\vert \text{Re}\left( z_{i}\right) \right\vert $, $\mathcal{S}\left( D\right) =\sum\limits_{i=1}^{n}\left\vert z_{i}\right\vert $ y $\mathcal{N}\left( D\right) =\sum\limits_{i=1}^{n}\sigma _{i}$, donde $D$ es un digrafo con $n$ vértices, valores propios $z_{1},\ldots ,z_{n}$ y valores singulares $\sigma _{1},\ldots ,\sigma _{n}$. En este trabajo hallamos cotas superiores e inferiores para $\mathcal{N}$ sobre el conjunto de digrafos. También mostramos que $\mathcal{E}\left( D\right) \leq \mathcal{S}\left( D\right) \leq \mathcal{N}\left( D\right) $ para todo digrafo $D$ y caracterizamos los digrafos donde se da la igualdad. Como consecuencia, deducimos nuevas cotas superiores e inferiores para $\mathcal{E},\mathcal{S}$ y $\mathcal{N}$ las cuales son obtenidas de cotas inferiores de $\mathcal{E}$ y cotas superiores de $\mathcal{N}$.

Joint work with Juan Pablo Rada (Universidad de Antioquia, Medellín, Colombia).

View abstract PDF