Conference abstracts

Session S11 - Representations of Algebras

No date set

Representation of Twisted Tensor Products

Jack Arce Flores

Pontificia Universidad Católica del Perú-PUCP, Perú   -

We obtain a faithful representation of the twisted tensor product $B\otimes_{\chi}A$ of unital associative algebras, when B is finite dimensional. This generalizes the representations of [C] where $B=K[X]/$, [GGV] where $B=K[X]/$ and [JLNS] where $B=K^n$. Furthermore, we establish conditions to extend twisted tensor products $B\otimes_{\chi}A$ and $C \otimes_{\psi}A$ to a twisted tensor product $(B\times C)\otimes_{\varphi}A$.\\

[A] J. Arce. Representation of twisted tensor Products. arXiv:1505.01232 [math.RA] 6 may 2015.

[C] C. Cibils. Non-commutive duplicates of finite sets. J. Algebra Appl , 5(3):361–377, 2006.

[GGV] A. Guccione, J. J. Guccione and C. Valqui, Non commutative truncated polynomial extensions.

[JLNS] Jara, J. López Peña, G. Navarro and D. Stefan, On the classification of twisting maps between K^n and K^m, arXiv:0805.2874v3 [math.RA] 24 Sep 2009.

Joint work with .

View abstract PDF